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Pore formation induced by nanoparticles binding
to a lipid membrane†
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Nanoparticles (NPs) enter a cell primarily via endocytosis, during which they are engulfed by the cell and

reside in lipid vesicles named endosomes. Apart from when an endosome is pinched off the plasma

membrane, structural integrity of its lipid membrane is usually well maintained. Under certain circum-

stances, however, such structural integrity can be considerably perturbed by a nanoparticle. For instance,

recent experiments [Chu et al., Sci. Rep., 2014, 4, 4495] indicate that nanodiamonds with sharp corners

can escape from an endosome by piercing its lipid membrane. Nonetheless, the energetics of this behav-

ior and how it may be controlled by membrane adhesion and NP morphology remain unclear. In this

work, we employ continuum modeling to investigate membrane pore formation induced by the spon-

taneous binding of a sharp nanoparticle. Based on two axial-symmetric NP models, we characterize the

indispensable role played by curvature heterogeneity, membrane adhesion, and the sharpness as well as

the size of a nanoparticle in ‘breaking’ a lipid membrane. Apart from revealing a general mechanism of NP

binding-induced membrane pore formation, our results provide the reference for improving the endo-

somal escape of nanoparticles through manipulating their morphology, a direction that can be explored

either independently or combined with existing strategies targeting NP surface chemistry.

Introduction

Due to the rapid development of nanotechnology, consumer
products containing nanomaterials have increased rapidly over
the past couple of decades.1 In all living organisms, the
plasma membrane represents the first barrier against the entry
of a nanoparticle (NP) into a cell. NPs cross this barrier primar-
ily through endocytosis, a process during which they are
engulfed by the cell and reside in lipid vesicles named endo-
somes.2 The specific endocytosis pathway taken by a nano-
particle, be it phagocytosis, pinocytosis, caveolae-dependent or
clathrin-mediated endocytosis, depends strongly on both NP
properties and cell types under investigation, reflecting the
complexity of the NP endocytosis mechanism.1,3 Following
endocytosis, nanoparticles may escape from the endosome
and enter the cytosol, which is particularly relevant for NPs
intended as intracellular sensors or delivery vessels. Indeed,
successful endosomal escape is key to improving the bio-

availability of drugs delivered by NP carriers—if these mole-
cules remain trapped within an endosome, their therapeutic
effects may be completely diminished.4–7

A number of strategies have been developed to engineer
nanoparticles’ endosomal escape.4–7 For instance, pH-
buffering agents have been exploited to create a ‘proton
sponge effect’ to trigger endosomal swelling and lysis, thereby,
releasing its contents.4 In addition, endosomal escape can be
achieved by breaking the lipid membrane. For instance, cat-
ionic gold NPs have been shown to disrupt bilayer structures8

and cause the release of fluorescent dyes from a vesicle.9,10

Specific modifications of the NP surface may damage the
endosomal membrane via chemical reactions.11 More recently,
nanodiamonds (NDs) with sharp corners have been shown to
pierce the endosomal membrane, thereby, escaping from the
endosome vesicle.12,13 Interestingly, such a behavior appears
to be morphology dependent: NDs with a thin (∼2 nm) SiO2

coating can still make the escape, but when a thick (∼15 nm)
SiO2 coating ‘rounds off’ their corners, NDs remain stable in
the endosome.12

Computationally, the interactions between nanoparticles
and membranes have been extensively studied via all-atom
molecular dynamics (MD) simulations,8,14–17 coarse-grained
(CG) MD simulations,18–24 dissipative particle dynamics (DPD)
simulations25–29and continuum modeling.30,31 The advantage
of all-atom MD lies in its high spatial and temporal resol-
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utions, although the substantial computational cost often
limits its application. CG MD32,33 and DPD simulations,34,35

which greatly extend the length and time scales of all-atom
MD, have therefore become increasingly popular.36–39

Continuum modeling based on elastic theory may be con-
sidered an extreme case of ‘coarse graining’ and has been
applied in numerous studies of NP–membrane
interactions.40–46 Despite these extensive computational
studies, however, the mechanism by which the aforemen-
tioned nanodiamonds pierce the endosomal membrane is yet
to be determined. In general, while continuum modeling
studies routinely examine the conditions under which NPs
can, for instance, become engulfed by a lipid vesicle, they
rarely treat the ‘breaking’ of the latter by the former. MD simu-
lations investigating such NP binding-induced loss of mem-
brane structural integrity are limited to small nanoparticles,
while the corresponding DPD simulations often employ an
external driving force or assume a strong NP–membrane
adhesion. These latter conditions either do not match the
spontaneous nature of nanodiamond-induced membrane dis-
ruption, or, result in a bilayer being wrapped seamlessly
around an entire nanoparticle, which differs significantly from
nanodiamond-containing vesicles reported experimentally.12,13

In this work, we employ continuum modeling to determine
the energetics of nanoparticle-induced pore formation in an
infinite, flat membrane. Inspired by the experimental obser-
vations on nanodiamonds,12,13 we create two axial-symmetric
models, a prolate spheroid and a rounded cone, and character-
ize their required geometry and membrane adhesion strength
to induce pore formation. The results from the former model
inform us of the critical role of curvature heterogeneity: when
a prolate spheroid reduces to a sphere, pore formation
becomes energetically unfavorable regardless of its size or
adhesion strength. The results from the latter model, which
provides finer control over its local geometry, further reveal key
requirements on the NP size and sharpness to induce mem-
brane pore formation, i.e., a nanoparticle needs to be both
sharp and large enough in order to spontaneously pierce a
membrane. Overall, our results not only agree well with the
aforementioned experiments, but also provide a mechanistic
understanding of the novel phenomenon of morphology-
dependent, NP binding-induced membrane pore formation.
Previous strategies for enhancing endosomal escape,4–7 such
as coating a NP with cationic polymers or cell-penetrating pep-
tides, frequently focus on its surface chemical properties. For
this reason, our findings on the morphological requirements
of NP-induced pore formation may be exploited as an indepen-
dent degree of freedom to enhance the endosomal escape of
nanoparticles.

Methods

The systems studied in our work consist of nanoparticles inter-
acting with an infinite, flat membrane. Our theoretical and
numerical approach largely follows that of Deserno,40 with a

major difference being our explicit treatment of the possibility
of a sharp NP ‘piercing’ the membrane. This is done by includ-
ing a pore formation contribution into the total deformation
energy of the membrane. Particularly, for a given nanoparticle,
we first consider a membrane wrapping the NP without pore
formation. This process has been well understood to be a com-
petition between the favorable NP-lipid adhesion and the unfa-
vorable membrane bending and stretching energy. A signifi-
cant contribution to the latter comes from wrapping a highly
curved region of a nanoparticle, e.g., its tip. Therefore, we next
consider the energetic cost of piercing the membrane, begin-
ning from the most curved region of the NP—a pore formed in
this region lowers the bending and stretching energy of the
membrane at the cost of introducing an open edge. When the
released energy is greater than the edge energy, pore formation
may become energetically favorable. In general, we identify the
final state with the lowest energy through a two-dimensional
scan over the wrapping and pore extent for a given nano-
particle. In the following, we briefly introduce the theoretical
background of our calculation and the NP models considered
in this work. We then discuss the shape equations for the free
part of the membrane and the corresponding energetic con-
sideration of pore formation.

Theoretical backdrop

We assume that the binding of a given nanoparticle to a mem-
brane is driven by an adhesion energy proportional to their
contact area Aad:

Ead ¼ �ωAad ð1Þ
where ω is the adhesion constant. As reviewed by Contini
et al.,48 ω typically falls into the range of ∼0.2 to 1.2kBT per
nm2, with the exception of the adhesion strength of DMPC
lipid bilayers on gold electrodes measured at ∼9.7kBT per nm2.
Here, we scan a range of ω from 0.05 to 4kBT per nm2, and
adopt a representative value of 0.5kBT per nm2 in calculations
with a constant ω.

Following the classical Canham–Helfrich continuum
model,49,50 we treat the membrane as an infinitely thin elastic
sheet with its bending energy (Ebend) in the following form:

Ebend ¼
ð

kc
2
ð2H � c0Þ2 þ kgK

� �
dA; ð2Þ

where kc and kg are the bending rigidities associated with the
mean (H) and Gaussian (K) curvature of the membrane
surface, respectively. Their representative values reported
experimentally are adopted in this work, namely, kc =
20kBT

51–53 and kg = −16kBT (see ref. 54 and references therein).
Assuming a symmetric membrane, we set the spontaneous
curvature c0 to zero. By the Gauss–Bonnet theorem,

Ð
KdA is a

topological invariant. Therefore, the contribution of the
Gaussian curvature term to Ebend can be ignored as long as no
pore is formed in the membrane. Apart from Ebend, defor-
mation of the membrane is also penalized by a tension energy
(Eten). Assuming that the membrane is being pulled against a
prescribed lateral tension σ, Eten is proportional to Aex, the
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excess, stretched area of the membrane: Eten = σAex. With the
arc-length parameterization adopted in ref. 40 and shown in
Fig. 1a, Eten takes the following form:

Eten ¼
ð
σð1� cos ψÞdA; ð3Þ

where ψ is the angle between the membrane arc and the hori-
zontal. Typical cellular tension is reported to be around
0.05 mN m−1,55 although it can vary from nearly zero to
approximately 1 mN m−1 under different conditions.56–58 In
this work, apart from the representative 0.05 mN m−1, we also
perform our calculations at three other tension values, σ =
0.003, 0.5, and 1.0 mN m−1. These four values of σ altogether
cover the range of low, medium as well as high tension
regimes. Finally, we consider the possibility for pore formation
within the membrane. As we assume axial symmetry in our cal-
culations, the ‘shape’ of the pore is restricted to a circle and
the corresponding energy cost Epore is:

59,60

Epore ¼ 2πrpη; ð4Þ
where rp is the pore radius and η is the line tension arising
from rearranging lipid molecules at the edge of the pore. The
typical value of η = 10 pN (ref. 61 and 62) is adopted in our cal-
culation. Note that eqn (4) only corresponds to the edge energy
associated with pore formation, while the mechanical work of
pore expansion arising from the release of membrane tension
energy is considered separately.

Summing up the above contributions gives the total energy
of the NP–membrane system:

Etot ¼ Ead þ Ebend þ Eten þ Epore: ð5Þ
The calculation of Etot is then divided into two parts,

namely, the part of the membrane attached to the NP surface
and the free part. While the former is straightforward to
obtain since the shape of the membrane follows exactly that of
the nanoparticle, calculation of the latter is achieved by invok-
ing the Euler–Lagrange equation and numerically solving the
resulting set of non-linear differential equations.

Model construction

Prolate spheroid. The first model considered in our work is
a prolate spheroid (Fig. 1a) designed to represent the entire

nanoparticle under investigation. In spherical coordinates,
such a prolate spheroid is represented by x = a sin ϑ cos ϕ, y =
a sin ϑ sin ϕ and z = −c cos ϑ, where c and a are its semi-major
and semi-minor axis, respectively. Note that we have defined ϑ

as the polar angle with respect to the negative z axis, as it pro-
vides a convenient description of the NP-induced pore for-
mation. To mimic the size of the nanoparticles studied in ref.
12 and 13, we first fix c to be 50 nm and scan the aspect ratio e
= c/a and then repeat the calculations at two additional values
of c at 25 and 100 nm respectively. An additional calculation is
performed with the aspect ratio e set to 7.5 while c is varied
between 15 and 150 nm.

The area element of the prolate spheroid is

dA ¼ 2πa sin ϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2 ϑþ c2 sin2 ϑ

p
dϑ, and its mean

and Gaussian curvatures are H ¼ c 2a2 þ ðc2 � a2Þsin2 ϑ =�½
½2a a2 þ ðc2 � a2Þsin2 ϑð Þ

3
2� and K = c2/[a2 + (c2 − a2) sin2 ϑ]2,

respectively. If the above NP model approaches an infinite flat
membrane from above and gradually becomes wrapped at its
south pole, the energy of the part of the membrane wrapping
the prolate spheroid is:

EPS ¼
ðα
0

�ω
z}|{Ead

þ 2kcH2
zfflffl}|fflffl{Ebend

þ σ 1� a cos ϑffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2 ϑþ c2 sin2 ϑ

p
 !zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Eten2

6664
3
7775

2πa sin ϑ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2 ϑþ c2 sin2 ϑ

p
dϑ;

ð6Þ

where α denotes the polar angle of the location where the
membrane first leaves the surface of the spheroid. Finally, a
pore that forms at its south pole with a polar angle β (0 < β <
π/2) has the energy Epore = 2πa sin βη.

Rounded cone. In the prolate spheroid model described
above, sharpness is controlled by the aspect ratio, the latter of
which is a global property, i.e., varying e affects the overall
shape of the spheroid. To gain a finer control over the local
geometric properties of our NP model, we constructed a
rounded cone, the tip of which has radius R and the side of
which is of length L. This model bears close resemblance to
the tip part (circled region in Fig. 1b) of a nanodiamond
studied experimentally. Its three geometric parameters (R, L
and the angle θ shown in Fig. 1c) allow us to better separate
the size of the model from its sharpness, the former of which
is dictated by L while the latter is primarily set by R.

Again assuming that the above NP model approaches an
infinite flat membrane from above, we obtain the energy of the
membrane wrapping the tip of the rounded cone:

ERCtip ¼
ðα
0

�ω
z}|{Ead

þ 2kc
R2

z}|{Ebend

þ σ 1� cos ϑð Þ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Eten

2
664

3
7752πR2 sin ϑdϑ

¼ð4πkc � 2πωR2Þ 1� cos αð Þ
þ σπR2ð1� cos αÞ2;

ð7Þ

Fig. 1 Nanoparticle models considered in this work. (a) A prolate spher-
oid NP model with the arc-length parameterization of the membrane
illustrated. (b) Representative transmission electron microscopy image
of a nanodiamond studied in ref. 12 and 13. (c) A rounded cone NP
model designed to mimic the tip of the nanodiamond in (b).
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where α again denotes the location where the membrane first
leaves the surface of the tip (0 ≤ α ≤ θ).

If the membrane continues to wrap the side of the rounded
cone, it becomes more convenient to switch to the cylindrical
coordinate. Temporarily shifting the origin to the vertex of the

cone, one obtains its representation as x ¼ u
tan θ

cos ϕ, y ¼
u

tan θ
sin ϕ and z = u. The area element is dA ¼ 2πu

tan θ sin θ
du,

while the mean curvature is H ¼ tan θ sin θ

2u
and the Gaussian

curvature K = 0. The corresponding energy of the membrane is
therefore:

ERCside ¼

ððR tan θþL′Þ sin θ

R tan θ sin θ
�ω
z}|{Ead

þ 2kc
tan θ sin θ

2u

� �2
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Ebend

þ σ 1� cos θð Þ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Eten

2
6664

3
7775 2πu
tan θ sin θ

du

¼ ð2πRL′ sin θ þ πL′2 cos θÞ½σð1� cos θÞ � ω�

þ kcπ
sin2 θ

cos θ
ln 1þ L′

R tan θ

� �
;

ð8Þ
where L′ denotes the length of the side of the cone wrapped by
the membrane (0 ≤ L′ ≤ L). It should be noted that we do not
consider membrane wrapping beyond the side of the rounded
cone, i.e., the membrane does not curve back to wrap the base
of the cone. Energetically such wrapping is prohibited by the
infinite curvature along the rim of the base, i.e., where the
generatrix meets the directrix of the cone. Practically it is also
of little relevance, since the rounded cone model mimics only
the tip part of a nanodiamond. Along this line, we also restrict

θ to the range 0;
π
2

� 	
in our calculation, since a model with

θ � π
2

loses resemblance to the NPs studied experimentally.

Finally, if a pore with polar angle β forms at the spherical tip
of the rounded cone NP, its energy is simply Epore = 2πR sin βη.
If it continues to grow and spans a length Lp along the side of
the cone, its energy becomes Epore = 2πη(R sin θ + Lp cos θ).

Shape equation of the free part of the membrane

The energy of the free part of the membrane (Efree) only con-
sists of two contributions: bending and stretching. Following

ref. 40, we obtain its two principle curvatures as
sin ψ

r
and ψ̇ ,

where the superscript dot represents a derivative with respect
to the arc length s. A Lagrange function L can then be setup:63

L ¼ r ψ̇ þ sin ψ

r

� �2

þ 2σ
kc

ð1� cos ψÞ
� �
þ λrðṙ � cos ψÞ þ λhðḣ� sin ψÞ;

ð9Þ

where the first two terms in the bracket represent the
bending and tension energy, respectively, while the last two
terms enforce the constraints ṙ = cos ψ and ḣ = sin ψ.40

Finally, Efree is given by Efree ¼ πkc
ð1
0
Lds. Switching to the

Hamiltonian description we obtain the full set of shape
equations, which are presented in the ESI,† along with their
boundary conditions. The numerical solution of these
shape equations is found through a shooting algorithm
where the only missing boundary condition at the mem-
brane–NP contact point, namely, ψ̇ð0Þ, is scanned to achieve
asymptotic flatness of the membrane.40 The resulting Efree
is then added to EPS or ERCtip and ERCside to yield Etot. This
calculation is first performed for a given wrapping degree of
an NP model without considering pore formation, and is
then followed by a scan over the pore size as described
below.

Pore formation energetics. Unlike in a free membrane, pore
formation energetics in a membrane attached to a nano-
particle concerns not only the straightforward Epore term.
First, the area on the NP surface exposed upon pore formation
releases certain adhesion, bending and stretching energy.
These terms are readily evaluated with eqn (6) to (8). Second,
since pore formation signals topological change of the mem-
brane, the previously ignored Gaussian curvature contribution
to Ebend must now be considered. Invoking the Gauss–Bonnet

theorem,
ðK

dA over the free part of the membrane can be cal-

culated from integrating the geodesic curvature around the
pore edge. Equivalently, it may also be obtained by negating
over the area initially covered by the membrane before pore
formation. For instance, assuming that a pore forms at the
south pole of the prolate spheroid with a polar angle β, the
Gaussian curvature contribution to the bending energy is now

Egau ¼ �2πkg 1� a cos β=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 cos2 β þ c2 sin2 β

p� 	
. Similarly,

in the rounded cone model, if the pore forms only within the
spherical tip, the resulting Egau is −2πkg(1 − cos β). Once the
pore covers the entire spherical tip, Egau = −2πkg(1 − cos θ). As
the Gaussian curvature is everywhere zero on the cone
surface, further growth of the pore onto the side of the cone
does not change Egau. Finally, summing up Epore, Egau and the
released energy due to the receding of the membrane, we
obtain ΔEtot, the change in Etot upon pore formation. For a
given wrapping extent ρ, defined as the radial coordinate of
the location where the membrane leaves the NP surface
(Fig. 1a), we vary the pore size from zero to ρ and record the
corresponding new Etot. Through this two-dimensional scan,
we identify the final state of the NP–membrane system with
the minimum energy.

It is worth noting that in the above calculations the pore
never grows onto the free part of the membrane, i.e., the
membrane always remains attached to the surface of our
NP models. As a result, the shape of the free part of the
membrane is unaffected by the presence of the pore, which
is fundamentally different from a membrane with a free
open edge.64,65 The latter scenario is not considered here as
under such a condition, no NP–membrane adhesion is
retained and the resulting Etot is inevitably positive. The
nanoparticles would therefore stay detached from the mem-
brane (Etot = 0).
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Results
Prolate spheroid NP

Spherical NP. Before we discuss the results of prolate spher-
oids, it is instructive to consider first a spherical nanoparticle,
which may be interpreted as a special prolate spheroid with an
aspect ratio of 1. The energy of the part of the membrane
attached to this NP can be readily obtained either by setting a
= c = R in eqn (6) or simply by invoking eqn (7): Esphere = ERCtip.
Note that in the latter case the rounded cone is assumed to
contain only its tip (θ = π). The energy of the free part of the
membrane is non-negative—at σ = 0 it adopts the shape of
catenoids,40 which leads to Efree = 0; otherwise, Efree > 0. The
total energy of the NP–membrane system is therefore Etot =
Esphere + Efree ≥ Esphere.

If we now assume that a pore with a polar angle β forms at
the south pole of this spherical NP, the change in Etot is

ΔEtot ¼ � ð4πkc � 2πωR2Þð1� cos βÞ þ σπR2ð1� cos βÞ2
 �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{releasedpart of Esphere

þ2πR sin βη
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Epore

�2πkgð1� cos βÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{Egau

:

ð10Þ

Despite the seemingly complex form of ΔEtot, it renders the
discussion of pore formation in spherical NPs rather straight-
forward: clearly, its last two terms (Epore and Egau) are
both non-negative. Therefore, if pore formation is to be
more favorable than the pore-free state, its first term must
be negative, which immediately leads to the condition

ω ,
2kc
R2 þ σ

2
ð1� cos βÞ. Meanwhile, if pore formation is to be

more favorable than the detached/free state, the energy associ-
ated with the remaining part of the membrane attached to the
NP surface, which is simply the sum of Esphere and the first
term in eqn (10), must be negative. This requirement leads to

ω >
2kc
R2 þ σ

2
ð1� cos βÞ þ σ

2
ð1� cos αÞ, which clearly contra-

dicts the previously derived condition.
Therefore, regardless of its size, pore formation is always

energetically unfavorable for a spherical NP. This result can be
qualitatively explained by the homogeneity of a spherical
surface—pore formation only becomes favorable when the
energy released from a highly curved region outweighs the cost
of introducing an open edge, while the remaining, less curved
regions should maintain membrane adhesion to yield a nega-
tive Etot. Since no part of a spherical surface is more or less
curved than other parts, a spherical NP can never induce ener-
getically favorable pore formation by itself. As found pre-
viously,40 when its curvature becomes very large, the mem-
brane simply stays detached from the NP.

Prolate spheroid NP. The phase diagram of a prolate spher-
oid NP with c = 50 nm and an aspect ratio e ranging from 2 to
20 is shown in Fig. 2a. At a low aspect ratio, e.g., e = 3, no pore
formation occurs, while the state with the lowest energy
changes from free to partial wrapping and then to complete

wrapping as the adhesion strength ω increases (Fig. 2b). This
behavior is similar to membrane wrapping of a spherical
colloid.40 Such a similarity is to be expected, since at a low
aspect ratio the prolate spheroid largely resembles a sphere.
One difference, however, is that unlike a spherical NP, the tran-
sition from the free to partial wrapping state is discontinuous,
with an energy barrier arising from wrapping the highly
curved tip of the prolate spheroid (Fig. 2b).

Once e increases to beyond 4.1, pore formation becomes
accessible. With the semi-major axis of the prolate spheroid
fixed at c = 50 nm, this corresponds to a semi-minor axis of a
≈ 12 nm. A prolate spheroid NP this ‘sharp’ can induce pore
formation when the adhesion strength is above a certain
threshold. As its aspect ratio increases, the required threshold
value also increases, as indicated by the boundary separating
the free and the PWP state shown in Fig. 2a. With e reaching
beyond 4.4, the complete wrapping state is no longer accessi-
ble within the range of ω examined here. Further increase in
the aspect ratio to beyond ∼6 also squeezes out the pore-free
partial wrapping state.

For a given aspect ratio, the largest pore is achieved at
an intermediate adhesion strength. For instance, with e = 6,
the pore radius is approximately 5.0 nm with ω = 0.3kBT per
nm2 and decreases to approximately 3.0 nm with ω = 0.7kBT
per nm2. This result reflects the competition between mem-
brane wrapping and pore formation: if ω is too strong, only
a small pore can be afforded due to the highly favorable
NP–membrane adhesion; meanwhile, if the adhesion
strength is too weak, neither of the above two states is favor-
able and the membrane stays detached from the prolate
spheroid.

The above calculations were performed at the membrane
tension of σ = 0.05 mN m−1. Decreasing σ to 0.003 mN m−1

reduces the energetic cost of wrapping and pore formation,
effectively shifting the phase diagram horizontally to the left,
where pore formation can be achieved at a smaller ω

(Fig. S1a†). Conversely, increasing σ to 0.5 mN m−1 and
1.0 mN m−1 gradually shifts the phase diagram to the right,
favoring the free state instead (Fig. S1b and c†). As shown in

Fig. 2 Phase diagram (a) and normalized total energy (b) of a mem-
brane wrapping a prolate spheroid NP with c = 50 nm at σ = 0.05 mN
m−1. Dashed curves in (a) represent contour lines of pore radius (unit:
nm). The plots of normalized Etot as a function of wrapping degree α

shown in (b) are obtained with e = 3.5 and correspond to the free
(black), partial wrapping (red) and complete wrapping (blue) state,
respectively.
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Fig. S2a and b,† a decrease in c shifts the phase diagram
towards the lower right, whereas an increase in c has the oppo-
site effect. At a given aspect ratio and adhesion strength,
Fig. S2c† indicates that larger particles are more likely to be
wrapped by the membrane, a well-known result from previous
studies.40,43 Notably, the PWP state, which only becomes favor-
able when c is large enough, will become inaccessible again as
c further increases, i.e., a prolate spheroid at a given e needs to
be neither too small nor too large in order for pore formation
to be energetically favorable.

Rounded cone NP

The results from the previous section indicate that a ‘sharp
enough’ prolate spheroid is capable of inducing membrane
pore formation. However, the resemblance between a prolate
spheroid and a nanoparticle examined experimentally12

(Fig. 1b) is clearly limited. In addition, sharpness cannot be
controlled locally in a prolate spheroid, since varying the
aspect ratio alters curvatures over its entire surface. With c
kept a constant, a change in the aspect ratio also affects the
size of the prolate spheroid along the semi-minor axis. In
order to overcome these limitations, we constructed a rounded
cone to represent the tip of the nanoparticle studied experi-
mentally (Fig. 1). This model allows fine control over its geo-
metric properties: its size is predominantly determined by the

edge length L, and the sharpness at its tip is determined by
the radius R. The angle θ controls the ‘tilting’ of the edge,
which, in turn, affects the mean curvature on the cone surface.

Wrapping energetics. The energetics of a membrane wrap-
ping the rounded cone NP consists of two parts: wrapping the
spherical tip and wrapping the side of the cone. A close look at
the energy of the latter part (eqn (8)) reveals that when
adhesion is extremely weak (ω < ωmin, where ωmin ≡ σ(1 −
cos θ)), ERCside is positive, i.e., wrapping the side of the cone is
unfavorable regardless of the length of the wrapped part (L′).
Under this condition and given the set of parameters studied
in this work, it turns out that wrapping of the spherical tip is
also unfavorable, i.e., ERCtip > 0. Therefore, the membrane
prefers to stay detached from the entire nanoparticle under
such a weak adhesion.

It should be emphasized that ωmin is not the minimum ω

required to achieve wrapping for a given rounded cone, which
corresponds to the boundary separating the free state from
other states in the phase diagram shown in Fig. 3b and cannot
be expressed in an analytic form. The significance of ωmin is
rather the following: with ω > ωmin, for any given tip radius R
and tilt angle θ, complete wrapping of the rounded cone NP
can be achieved with a large enough L. This result is further
illustrated in Fig. 3a and 4a, and is explained by the form of
ERCside—at large L′, ERCside is dominated by the adhesion term,

Fig. 3 Phase diagrams of the rounded cone NP at σ = 0.05 mN m−1 with (a) θ = 0.375π and ω = 0.5kBT per nm2, (b) θ = 0.375π and L = 50 nm, (c) L =
50 nm and ω = 0.5kBT per nm2. Dashed curves represent contour lines of pore radius (unit: nm). In CW, CWPT and CWPbT states, the membrane
wraps the entire surface of the rounded cone (excluding its base), with either no pore (CW), a pore forming at its tip (CWPT) or a pore growing
beyond the tip onto the side of the rounded cone (CWPbT).

Fig. 4 One-dimensional energy profiles of Etot as a function of the wrapping and pore extent at σ = 0.05 mN m−1 with (a) θ = 0.375π, R = 4.0 nm
and L = 30 nm, (b) ω = 0.5kBT per nm2, θ = 0.375π, and L = 30 nm, (c) ω = 0.5kBT per nm2, θ = 0.375π, and R = 4.0 nm. Membrane wrapping of the tip
and the side of the rounded cone is shown as solid red and blue curves, while pore formation at these two parts are shown as dashed red and blue
curves, respectively. Black squares indicate the locations with the minimum Etot, while blue circles represent the locations with the minimum ΔEtot
once a pore grows onto the side of the rounded cone. As described in the Methods section, the wrapping and pore extent ρ is defined as the radial
coordinate of the location where the membrane leaves the NP surface or forms a pore. For clarity, the wrapping extent (ρwrap) and pore extent (ρpore)
are labeled in the upper and lower x-axis, respectively.
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which scales quadratically as the wrapped edge length L′.
Therefore, as long as ω exceeds the aforementioned threshold,
it is always possible to increase L, and, correspondingly, L′, to
render ERCside negative enough. Note that even with the
maximum σ = 1.0 mN m−1 and θ = 0.45π considered in our cal-
culations, the value of ωmin is only ∼0.2kBT per nm2, which
coincides with the lower boundary of typical adhesion strength
reported in the literature.48

Further analysis of ERCside reveals that under the
condition ω > ωmin, ERCside achieves a maximum at

LEmax ¼ tan θ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kc=2½ω� σð1� cos θÞ�p � R

� 
. Temporarily putting

aside the contribution of Efree, we can attempt an approximate
analysis of the membrane wrapping behavior along the side of
the rounded cone: if LEmax

< 0, it is immediately clear that com-
plete wrapping is always favorable; if LEmax

> 0, wrapping of the
side of the cone can become unfavorable when the edge length
L is not large enough and the membrane attaches, if at all, to
the tip of the rounded cone only. This latter scenario, however,
is of little interest here, since it reduces to the spherical NP
case examined earlier, where it has been shown that pore for-
mation is never favorable for a spherical nanoparticle alone.
Adding back the ignored contribution of Efree complicates the
above analysis—the possibility of partial wrapping of the side
of the rounded cone can no longer be excluded. Nonetheless,
such partial wrapping is never recorded in the parameter
space examined in our work. As shown in Fig. 3, the wrapping
extent is either zero (membrane detached from the NP) or
complete (excluding the base of the rounded cone). We should
add that a different mode of partial wrapping, in which the
nanoparticle tilts to touch the membrane with one side of its
cone surface, becomes possible when we forgo the axial sym-
metry assumption in our calculations. Such axial-asymmetric
modes of NP–membrane interactions are discussed briefly in
the next section.

Pore formation energetics. Similar to the calculations of
wrapping extent described above, we consider pore formation
in our rounded cone NP a two-stage process: a pore may (1)
form at the spherical tip and then (2) grow onto the side of the
rounded cone. Overall, as described in the Methods section,
the free part of the membrane is unaffected by the pore for-
mation extent considered in our work. ΔEtot, the change in Etot
relative to the pore-free state, therefore, is solely determined by
the Gaussian curvature contribution Egau, the released energy
due to the receding of the membrane, as well as the associated
Epore. The analytic forms of ΔEtot in the above two-stage pore
formation are given in the ESI.† Based on analysis detailed
therein, we conclude that for a pore limited to the spherical tip
of the nanoparticle, ΔEtot is a minimum at rp = R sin θ, where
rp denotes the radius of the pore. In other words, if a pore
forms at all, it covers at least the entire spherical tip of the
rounded cone. The same analysis reveals that under the pre-
viously discussed condition ω > ωmin, a pore that grows onto
the side of the rounded cone achieves a minimum ΔEtot at a
finite (and generally small) edge length Lp.

A close examination of the phase diagrams in Fig. 3,
Fig. S3,† and the one-dimensional energy profiles in Fig. 4

reveals the relationship between the pore size and various
parameters considered here: first, while a large enough L is
one prerequisite for pore formation, once this condition is
met, the pore size is independent of L. Second, for pores that
are limited to the spherical tip, its size is also independent of
ω, which can be explained by the aforementioned analysis of
ΔEtot: pore formation at the tip, if it happens at all, will cover
the entire tip of a rounded cone. Therefore, the pore radius
depends only on R and θ in a pre-defined, straightforward
manner: rp = R sin θ. Finally, when the pore grows onto the
side of the cone, its radius becomes independent of R. This be-
havior is reflected in the expression of Lp, the only
R-dependent terms of which are canceled upon the calculation
of pore radius (see ESI† for details), and can also be appreci-
ated from the following argument: once the pore grows onto
the side of the cone, it no longer ‘remembers’ the geometry of
the spherical tip. Its size therefore is solely determined by the
adhesion strength and geometry of the cone, i.e., the value of
θ. Similar to the case of the prolate spheroid, the largest pore
is obtained at an intermediate adhesion strength (Fig. 3b).

The one-dimensional (1-D) energy profiles in Fig. 4 are gen-
erated along a pseudo reaction pathway in which we monitor
the system’s energy as the membrane first wraps the entire
rounded cone and then a pore begins to grow from its south
pole. While such a pseudo reaction pathway provides a con-
venient 1-D analysis of membrane energetics, it may not be
the actual pathway followed by the system during its transition
from, for instance, the free to the CWPT or CWPbT state
(Fig. 3). To identify the true transition pathway, or, the
minimal energy path (MEP), we employed the string
method,66,67 which has been previously employed to capture
the critical nucleus structure and energy barrier in membrane
pore formation.68 As revealed by Fig. 5 and Fig. S4,† a scan
through the two-dimensional space of normalized wrapping
versus pore extent shows that our NP-induced pore formation
does not proceed in the wrapping-first-pore-second manner.
Instead, the MEP corresponds to a path in which the pore
grows to its equilibrium size first, followed by wrapping of the

Fig. 5 Two-dimensional energy profiles of Etot as a function of the nor-
malized wrapping and pore extent at σ = 0.05 mN m−1, ω = 0.5kBT per
nm2, θ = 0.295π, L = 30 nm with (a) R = 2.0 nm and (b) R = 8.0 nm. The
final MEPs determined by the string method are shown in red dots,
while the initial strings are shown in big white dots, with small white
dots representing the evolution of the strings. The boundary between
the tip and the side of the rounded cone is marked by black dashed
lines.
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rest of the rounded cone. On the 1-D profiles, such a MEP
amounts to bypassing part of the solid curves in Fig. 4.

The above result on MEP underscores the nature of pore
formation, i.e., it is an activated process with an often substan-
tial energy barrier. For instance, with ω = 0.5kBT per nm2, R =
2.0 nm, θ = 0.295π, and L = 30 nm, the barrier of pore for-
mation induced by the rounded cone is around 86kBT at the
membrane tension of σ = 0.05 mN m−1, much greater than the
typical 40kBT barrier estimated for pore formation observable
experimentally.47 It is interesting, however, to further analyze
the nature of this large energy barrier. As hinted by the
expression of ΔEtot (see ESI†), the edge energy Epore and the
Gaussian curvature contribution Egau are two major contribu-
tors to the energy barrier against NP-induced pore formation.
The former accounts for the cost of pinching a hole in a flat
membrane, whereas the latter arises from deforming the flat
membrane to achieve wrapping of the nanoparticle. Within
the experimentally relevant range of parameters examined in
this work, these two contributions can both be significant. For
instance, out of the aforementioned 86kBT barrier, Epore and
Egau each contributes 36kBT and 40kBT, respectively. Clearly, if
the Egau term can be reduced, the energy barrier to NP-
induced pore formation may readily fall into the range of pre-
vious estimations.47 Such a possible scenario is further dis-
cussed in the next section.

Conditions for pore formation. As noted earlier, if a
rounded cone NP is to pinch a hole in the membrane, the hole
is at least as large as its spherical tip. The membrane adhesion
to the side of the rounded cone thus provides the sole driving
force of this process. As a result, wrapping of the side of the
cone must be energetically favorable, i.e., ω > ωmin is one prere-
quisite for pore formation. There is, however, also an upper
limit for ω for a given rounded cone NP (ωPT), beyond which
adhesion is so favorable that the cost of bending and stretch-
ing even at a highly curved tip can be well compensated. It
turns out that ωPT, which corresponds to the boundary separ-
ating the complete wrapping from the CWPT state in Fig. 3b,
can be obtained analytically:

ωPT ¼ kg þ 2kc
R2 � η sin θ

ð1� cos θÞRþ σ

2
ð1� cos θÞ: ð11Þ

The derivation of ωPT and ωPbT, the latter of which corres-
ponds to the boundary separating the CWPT from CWPbT
state, is provided in the ESI.† Together with Fig. 3b, they allow
one to estimate the range of adhesion strength over which
pore formation is achievable for a given rounded cone NP. For
instance, as shown in Fig. 3b, with R = 4 nm, increasing ω

from 0.05kBT per nm2 to 0.15kBT per nm2 shifts the equili-
brium state from free to CWPbT, while further increasing ω to
0.4kBT per nm2 shifts the state to CWPT. Finally, increasing ω

to beyond 0.6kBT per nm2 results in complete wrapping
(without pore formation) of the nanoparticle.

The above equation can be readily converted into a geo-
metric requirement on R and θ to achieve pore formation at a
given adhesion strength. For instance, with a given θ, eqn (11)

becomes a quadratic equation in R, the only positive root of
which corresponds to RPT, the largest tip radius for which pore
formation by the rounded cone NP is energetically favorable.
Similarly, at fixed R, the smallest angle θ at which pore for-
mation may occur (θPT) can again be obtained by treating eqn
(11) as a root finding problem. Overall, eqn (11) provides a
formula to manipulate the geometry of a rounded cone NP to
enable pore formation at a given adhesion strength. An
additional geometric requirement, as discussed earlier, is a
large enough edge length L, which is needed to provide
sufficient adhesion strength to maintain membrane–NP
attachment. Unfortunately, this last requirement on L lacks an
analytic form, although a cubic polynomial obtained via least
squares fitting appears to provide a reasonably good approxi-
mation (Fig. 3 and Fig. S3†). For instance, with R = 3 nm, redu-
cing L to below ∼15 nm shifts the system from pore formation
to the free state. Notably, the maximum pore size is also
achieved along the boundary separating the CW and the CWPT
states, as reflected by the contour plots of pore radius shown
in Fig. 3b and c. Analysis of eqn (11) therefore enables one to
maximize the pore size when, for instance, the adhesion
strength is fixed at a given value. In this case, the pore size
increases as θ increases, i.e., as the tilt of the cone surface
becomes more ‘steep’. Meanwhile, the pore size also grows as
R increases, although the latter must be kept below the
threshold value RPT mentioned above.

Discussion

The endosomal escape of nanoparticles is an important step
in their intracellular delivery of cargoes ranging from DNA,
short interfering RNA to proteins and small molecules.4 If
unable to escape, these cargo molecules can be degraded
when the environment turns acidic as the endosome matures
and eventually fuses with a lysosome. A number of strategies,
including membrane fusion for liposomal NPs, osmotic
rupture via the proton sponge effect, and membrane destabili-
zation by synthetic polymers or peptides, have been developed
to enhance nanoparticles’ endosomal escape.4–7 NP delivery
vessels that combine a mesoporous silica core with a sup-
ported lipid bilayer surface, i.e., protocells,69,70 have also been
developed. Through incorporating endosomolytic peptides on
their surfaces via lipid headgroup modifications, these multi-
functional NP carriers may induce endosome swelling and dis-
ruption, thereby, facilitating the release of their cargoes into
the cytosol.70 While it is generally accepted that the shape of a
nanoparticle plays an important part in modulating its uptake
and intracellular trafficking, a quantitative understanding of
how NP morphology may be manipulated to break a lipid
membrane is largely missing. Indeed, most of the endosomal
escape enhancement strategies mentioned above focus on
(surface) chemical rather than physical properties of a
nanoparticle.

In this work, we reveal the mechanism and quantify the
energetics of membrane pore formation induced by the spon-
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taneous binding of a sharp nanoparticle. While our calcu-
lations were inspired by endosomal escape experiments per-
formed with nanodiamonds, the results are general in describ-
ing NP-induced membrane pore formation. Upon reducing the
prolate spheroid model to a sphere, we show that pore for-
mation is never favorable for such a nanoparticle alone.
Curvature heterogeneity, therefore, is a prerequisite for energe-
tically favorable NP-induced pore formation: some part of the
NP surface needs to be less curved than the other part, so that
membrane adhesion can be retained over the former surface.
Furthermore, in order to spontaneously pierce a membrane,
our results indicate that a nanoparticle needs to be both sharp
and large enough. An immediate question that arises is ‘how
sharp (large) is sharp (large) enough?’ At a given adhesion
strength, eqn (11) allows one to quantify the ‘critical sharp-
ness’ for the rounded cone model—it provides the formula to
ensure pore formation by tuning the sharpness of the nano-
particle, which is primarily controlled by the tip radius R and
to a lesser degree, the tilting angle θ. Within the range of
experimentally relevant parameters scanned in our calcu-
lations, a tip radius less than ∼4–5 nm is generally required
(Fig. 3). This upper limit agrees well with the electron
microscopy images of nanodiamonds that escape from an
endosome (Fig. 1b and ref. 12). As for the question ‘how large
is large enough?’, while no analytic expression for the required
edge length L is available, numerical estimation (Fig. 3 and
Fig. S3†) shows that an L of at least ∼20 nm is generally
needed. This finding is again in line with the geometry of
escaped nanodiamonds.12

Collectively, the above results provide a quantitative refer-
ence for engineering NP morphology towards improved endo-
somal escape. For instance, with tips that can be reasonably
approximated as rounded cones, sharp corners or asperities
with a radius of ∼4–5 nm may be introduced onto the surface
of a nanoparticle, while ensuring that it has a long enough
edge (∼20 nm). If the NP–membrane adhesion strength can be
measured, a more accurate estimate of the desired morphology
can be obtained using eqn (11). For layered nanocarriers such
as protocells, the morphological manipulation can be per-
formed on the core structure, although it should be noted that
sharp tips added onto the silica core will be exposed to the
solvent due to the large energetic cost of wrapping these
highly curved parts by a supported lipid bilayer. Given the
small areas they occupy, these exposed tips should not signifi-
cantly alter the surface chemistry of a protocell. However,
whether the loaded cargoes are still well sealed in the resulting
structure will need to be verified experimentally. In general,
morphological manipulation of a nanocarrier is often indepen-
dent from the modification of its surface chemistry. Therefore,
while the former approach is explored, the latter can be simul-
taneously employed to, for instance, modulate NP–membrane
adhesion strength, or, introduce existing endosomolytic
agents. These joint strategies may bring about further
enhanced escape efficiency in the designed nanocarriers.

Most nanoparticles studied experimentally should meet the
aforementioned curvature heterogeneity requirement. For

spherical nanoparticles, this can be achieved by placing them
on a surface, thereby, enabling energetically favorable pore for-
mation, as has been reported by Roiter et al. using supported
lipid bilayers.71,72 It should be added, however, that for NPs
smaller than or comparable in dimension to the bilayer thick-
ness, the continuum model of a membrane begins to fail and
needs to be replaced by a molecular description of individual
lipids. Depending on their surface properties, these small
nanoparticles may directly penetrate the membrane by, for
instance, ‘dissolving’ into the hydrophobic lipid tail region,18

or, inducing local defects through strong charge–charge
interactions.19

Our calculations with both prolate spheroid and rounded
cone models reveal a wide range of adhesion strength over
which NP-induced pore formation can be favorable, i.e., from
a couple of tenths to a few kBT per nm2. This wide range of ω,
which covers the typical NP–membrane adhesion strength of
∼0.2–1.2kBT per nm2 reported in the literature,48 is in line
with the NP escape behaviors reported by Chu et al.12,13 Apart
from nanodiamonds, these experiments also include gold
nanoparticles and NDs with SiO2 coating. While NPs with
different surface chemistry may have a similar membrane
adhesion strength, the wide range of ω over which NP-
induced pore formation is achievable may also have contribu-
ted to the robust NP escaping patterns observed in these
experiments.

Apart from the aforementioned endosomal escape of nano-
diamonds, disruption of membrane structural integrity by NPs
with sharp corners has also been reported for graphene micro-
sheets. For instance, combining in vitro cell imaging with
coarse-grained and atomistic simulations, Li et al.28 showed
that while an ideal, atomically smooth graphene sheet cannot
penetrate a lipid membrane, such penetration can be readily
achieved in experimentally fabricated graphene, the latter of
which has rough edges. The penetration is found to be
initiated by a spontaneous, localized piercing of the mem-
brane at sharp corners or protrusions along the graphene
edge. While this observation is consistent with the existence of
a critical sharpness found in our calculations, more quantitat-
ive comparison between the two is prohibited by the distinc-
tion between graphene, effectively a 2-D material, and the 3-D
NP models considered here. Nonetheless, our results afford
quantitative and reasonably good comparison with the atomic
force microscopy measurements by Roiter et al.71,72 These
authors systematically varied the nanoscale roughness of a
mica surface by depositing on it spherical NPs with diameters
ranging from 1.2 to 22 nm. They monitored the presence of
pores in a DMPC supported lipid bilayer formed on the result-
ing surface and showed that NPs with diameters in the afore-
mentioned range pierced the membrane, whereas larger par-
ticles were covered by intact DMPC bilayers. Assuming a 5 nm
thickness of a supported lipid bilayer, the pore formed by a
spherical NP with the critical radius of 11 nm has rp ≈ 7 nm,
about 2 nm larger than the maximum pore size found in our
calculations. This difference can be explained by the different
geometries of the systems under investigation: a spherical NP
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deposited on a flat surface has L → ∞ and θ >
π
2
. As a result of

this unique geometry, the free/detached state is eliminated
from the phase space; furthermore, DMPC molecules lining
the pore are no longer entirely exposed to the solvent—
instead, as a pore shrinks around the nanoparticle placed on
mica surface, lipids along the pore rim can ‘touch’ the polar
NP and form favorable contact—this likely lowers the line
tension associated with an open edge, thus, allowing bigger
pores to be formed by more blunt nanoparticles.

As described in the Methods section, we assumed axial
symmetry in our calculations to simplify the derivation and
numerical solution of the shape equations. If we forgo this
assumption, the reaction pathways examined in our calcu-
lations become a subsection of the new, complete phase
space, where the nanoparticle may freely rotate to interact with
the membrane in an arbitrary orientation. For elongated NPs,
Dasgupta et al.44 found two main entry modes for their endo-
cytosis, namely, the ‘submarine’ and ‘rocket’ modes, in which
the NP long axis is either parallel or perpendicular to the
membrane, respectively.44 Depending on its morphology and
membrane adhesion strength, the nanoparticle may switch
between these two modes.44 In addition, previous studies indi-
cate that the orientation of a nanoparticle during endocytosis
may also depend on the speed of its internalization.21,23

Although the computation of axial-asymmetric NP–membrane
binding modes is beyond the scope of the current work, it is
tempting to conduct a qualitative analysis: take again the
rounded cone as a model system, instead of its highly curved
tip, the membrane can now wrap the side of the cone first,
which is analogous to the submarine mode mentioned above.
Similar to the results presented therein44 and in contrast to
the tip-first mode, membrane wrapping in the submarine
mode is expected to be continuous (with no energy barrier).
Under an intermediate adhesion strength, partial wrapping in
this mode can also be expected to have the lowest energy, in
which state the rounded cone ‘lies down’ and adheres to the
membrane with its relatively flat side. The resulting membrane
deformation can be rather small in such a partial wrapping
state and NP-induced pore formation may therefore face a
reduced energy barrier—since the membrane needs not to
deform as drastically compared with the complete wrapping
state, a smaller Egau term can be expected. This is somewhat
analogous to placing a sharp pencil horizontally on a piece of
paper and then slightly deforming the paper to let the pencil
tip pierce it through. Compared with seamlessly wrapping the
entire pencil, deformation to the paper is minimal, so the
term Egau, and, therefore, the total pore formation energy
barrier, may be lowered significantly. We plan to further
examine these axial-asymmetric modes in our future work.

Apart from the imposed axial symmetry, a number of other
caveats in our calculations should be pointed out: firstly, with
the simplification of the membrane as an infinite elastic
sheet, no effect of volume change, such as the potential
leakage from a vesicle upon pore formation, is included. Along
this line, rupture of a finite membrane when the bilayer is

stretched beyond a threshold is also not considered in our
work. Such stress-induced rupture, however, generally requires
a large contact area, as seen in vesicle-wall adhesion.73

Secondly, we also neglect hydrodynamic effects of the solvent,
which, along with vesicle volume change, have been found to
play a non-trivial role in the shape evolution of lipid vesicles
near a solid surface.47 Thirdly, our calculations are solely con-
cerned with the energetics, rather than the dynamics, of pore
formation. In our calculations a nanoparticle-induced pore
can be thermodynamically stable, whereas in experiments
nanodiamonds are known to entirely escape from an endo-
some within a few hours and the endosome vesicle is often
destroyed during this process.12 Clearly, to study such an
entire escape process, a kinetic model of membrane failure74

or the explicit consideration of pore edge propagation under
the influence of vesicle volume change and solvent hydrodyn-
amics,47 will likely be required. Molecular details of the pore
structure may also need to be taken into account in order to
more accurately estimate its formation barrier.68 Finally, how
the pore formation process examined here may be affected by
the presence of protein corona,75 which can alter both the
surface chemistry and morphology of a nanoparticle, remains
to be determined. On a related note, further studies of NP–
protein interactions may also help understand why nanodia-
monds in previous experiments12,13 did not break the plasma
membrane as they broke the endosomal one—a possible factor
contributing to this intriguing difference is that their inter-
actions with the former membrane may be primarily mediated
by receptor proteins.

Conclusions

Employing continuum modeling of two axial-symmetric nano-
particle models, we examined the energetics of NP-induced
membrane pore formation. In summary, such pore formation
is found to be energetically favorable when the cost of an open
edge is outweighed by wrapping a highly curved part of the NP
surface. During this process, membrane adhesion to the rest,
less curved parts of the nanoparticle provides the sole driving
force. For a rounded cone NP, which mimics the tip of a nano-
diamond escaping from an endosome, it must be both sharp
(R ≲ 4–5 nm) and large enough (L ≳ 20 nm) in order to render
pore formation energetically favorable. While the latter
requirement is estimated numerically, an analytic form is
found for the former requirement, providing a quantitative
reference for manipulating the NP morphology to break a lipid
membrane. Overall, our results agree with the findings of pre-
vious experiments and shed light on a general mechanism by
which a sharp nanoparticle may spontaneously disrupt the
structural integrity of a membrane. For NPs designed to be
intracellular biomarkers, biosensors or delivery vessels, such
disruption can be exploited as an independent degree of
freedom for modulating NP–cell interactions, in order to
achieve enhanced endosomal escape and increased cytosolic
residence time. Our results have implications in a wide range
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of NP-mediated applications, such as cargo delivery, bio-
sensing and bio-imaging. Further understanding of the disrup-
tive mode of NP–membrane interactions, which requires more
sophisticated treatment of membrane dynamics, should
provide additional insight into the design principles of safer
and more efficient NP materials.
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